Enhanced formulations and branch-and-cut for the two level network design problem with transition facilities
نویسندگان
چکیده
We consider a new combinatorial optimization problem that combines network design and facility location aspects. Given a graph with two types of customers and two technologies that can be installed on the edges, the objective is to find a minimum cost subtree connecting all customers while the primary customers are served by a primary subtree that is embedded into the secondary subtree. In addition, besides fixed link installation costs, facility opening costs, associated to each node where primary and secondary subtree connect, have to be paid. The problem is called the Two Level Network Design Problem with Transition Facilities (TLNDF). We first model the problem on an extended graph where an additional set of arcs corresponds to the installation of node facilities and propose a cut set based model for the TLNDF that is defined on this extended graph. We present several theoretical results relating families of cut set inequalities on the extended graph with subfamilies of cut set inequalities on the original graph. We then show how a standard multi-commodity flow model defined on the original graph can be strengthened using disaggregation “by technology”. We prove that the disaggregated compact formulation on the original graph provides the same lower bound as the cut set formulation on the extended graph. We develop a branch-and-cut algorithm for solving the TLNDF. The performance of this algorithm is improved by separating subfamilies of cut set inequalities on the original graph. Our computational study confirms the efficiency and applicability of the new approach.
منابع مشابه
A Benders' Decomposition Method to Solve Stochastic Distribution Network Design Problem with Two Echelons and Inter-Depot Transportation
In many practical distribution networks, managers face significant uncertainties in demand, local price of building facilities, transportation cost, and macro and microeconomic parameters. This paper addresses design of distribution networks in a supply chain system which optimizes the performance of distribution networks subject to required service level. This service level, which is consider...
متن کاملDeveloping a New Algorithm for a Utility-based Network Design Problem with Elastic Demand
Developing the infrastructures for preventing non-communicable diseases is one of the most important goals of healthcare context in recent years. In this regard, the number and capacity of preventive healthcare facilities as well as assignment of customers to facilities should be determined for each region. Besides the accessibility, the utility of customers is a determinative factor in partici...
متن کاملScenario-based modeling for multiple allocation hub location problem under disruption risk: multiple cuts Benders decomposition approach
The hub location problem arises in a variety of domains such as transportation and telecommunication systems. In many real-world situations, hub facilities are subject to disruption. This paper deals with the multiple allocation hub location problem in the presence of facilities failure. To model the problem, a two-stage stochastic formulation is developed. In the proposed model, the number of ...
متن کاملA Branch-and-cut Algorithm for the Capacitated Location-routing Problem
This paper describes a branch-and-cut algorithm for the Capacitated LocationRouting Problem (CLRP). In the CLRP customers with known demands must be served from capacitated facilities by an unlimited fleet of homogeneous, capacitated vehicles. The problem is to select a subset of potential facilities and to design vehicle routes around these facilities so that every customer is visited exactly ...
متن کاملA branch-and-cut algorithm for two-level survivable network design problems
This paper approaches the problem of designing a two-level network protected against single-edge failures. The problem simultaneously decides on the partition of the set of nodes into terminals and hubs, the connection of the hubs through a backbone network (first network level), and the assignment of terminals to hubs and their connection through access networks (second network level). We cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European Journal of Operational Research
دوره 225 شماره
صفحات -
تاریخ انتشار 2013